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The authors examine the problem of the mathematical simulation of
heterogeneous processes in a fluidized-bed reactor,

The theoretical analysis of the fluidized-bed pro-
cess is complicated, in the first place, by our ignor-
ance of the hydrodynamic situation in the reactor. It
is precisely the hydrodynamics that determine the
trajectories of the suspended polymer particles (we
are considering the process of polymer chlorination
in a fluidized bed), but since, other things being equal,
the trajectory of a particle uniquely determines the
degree of chemical reaction, two problems naturally
arise.

1. Determination of the trajectories of the particles.

2. Determination of their degree of chlorination.

As far as we know, the first problem has not yet
been solved; therefore we are obliged to assume some
hydrodynamic situation in the reactor. On the basis
of the published data [2], we will assume that the
particle mixing process is described by the convec-
tive diffusion equation
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with the corresponding initial and boundary conditions
m(x, 0) = 8 (x—0),
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since all the particles introduced into the equipment
at zero time will be initially concentrated around the
inlet to the apparatus at the point x = 0.

Wiener [3] and Kolmogorov [4] have shown that a
knowledge of equations of this type is sufficient to
determine the probability distribution of the particle
trajectories, or, as it is said, to introduce a measure
in trajectory space. It is obvious a priori that not all
trajectories are equiprobable. For example, it is im-
probable that all the particles introduced into the re-
actor at zero time will immediately leave it. It is also
improbable that, if the process is continuous, all the
particles will remain in the reactor for an indefinite
time.

On the other hand, it is obvious that in such pro-
cesses it is not enough to know the particle distribu-
tion with respect to dwell time in order to give a
unigque answer to the question of the degree of chlorin-
ation. For example, suppose a certain chlorine volume
concentration profile has been established in the re-
actor; then, as may be seen in the figure, even though
two trajectories begin and end at the same time (0, t;)
(i.e., the corresponding particles remain in the reac-

tor for the same period of time), they may still travel
through different parts of the reactor with different
chlorine concentrations C* and hence may be different-
ly chlorinated.

These simple considerations demonstrate the neces-
sity for taking the particle trajectories into account.
The measure introduced in trajectory space has many
of the properties of the length of a segment. For ex-
ample, it makes sense to speak of the integral over
trajectory space. In particular, all the bounded and
continuous functionals (i. e., functions in which the
role of independent variable is played by the trajectory,
e.g., the amount of chlorine absorbed by a particle
with a given trajectory) are integrable with respect to
this measure.

We will now construct a mathematical model of the
process. From the technical standpoint it makes sense
to consider only the stationary process in the follow-
ing two variants:

I. The concentration of chlorine in the gas phase
C*(x) is kept at a given level along the entire length
of the reactor.

II, The concentration of chlorine at the reactor in-
let C*(0) is given for a known fluid flow rate.

In both problems it is required to determine the
chlorine content of the polymer particles leaving the
equipment.

We will consider variant I. In this case there are
three possibilities.

1. The process at an individual grain proceeds in a
region intermediate between the intradiffusional and
the kinetic. In this case we have the following equa-
tions for the mass balance inside the granule (for
simplicity the temperature inside the granule is as-
sumed constant):
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the corresponding boundary and initial conditions are
C@,ry=0, %C_(t’ 0)=0, C({, R) =C*(x),
r

Ci(0,n) =0, n(0)=n, (4)

For a particle with fixed trajectory x(t) the boundary
condition takes the form C(t, R) = C*(x(t)), i.e., the
content of free and bound chlorine in the particle at any
moment, and in particular when it leaves the reactor,
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is in fact determined exclusively by the particle tra-
jectory; consequently, the distribution of the product
with respect to degree of chlorination is determined
by the measure in trajectory space.

2. The process on an individual polymer granule
proceeds in the kinetic region. (This can be achieved
by reducing the size of the granule.) In this case the
concentration of free chlorine in the particle pores
may be assumed not to depend on the distance to the
boundary of the particle (the variable coordinate is the
radius) and is equal to the concentration of chlorine in
the gas phase at that point of the reactor where the
particle happens to be located. Of course, this assump-~
tion is permissible only at relatively small particle
velocities, at which equalization of the free chlorine
concentrations inside the particle proceeds more
rapidly than variation of the conceuntration of chlorine
in the gas phase at the boundary of the particle due to
its motion. In practice this situation is observed at
small values of the mixing coefficient Dy and a small
linear particle velocity w. Then the last two equations
of system (3) with the corresponding initial conditions
C(0) = 0, n(0) = ny are sufficient to describe the mater-
ial balance inside the polymer granule. Here, C, does
not depend on r and is constant over the entire volume
of the particle. Of course, the amount of bound chlor-
ine in the particle also depends on the particle trajec-
tory, which is immediately evident from Eqgs. (3).

3. The process at the individual granule proceeds
in the intradiffusional region. This means that the
rate of supply of free chlorine, determined by inter-
nal diffusion, is much lower than the rate of the
chlorine addition reaction. Consequently, the entire
chlorine addition process proceeds at the interface
between a surface film of chlorine~-saturated polymer
and the rest of the polymer which is chlorine-free. In
this case the rate of the process is determined by the
rate of diffusion of free chlorine through the saturated
polymer film, and the rate of growth of the film is
determined by the rate of variation of the amount of
added chlorine and the chlorine safuration concentra-
tion. Mathematically, the process is described as
follows: the equation of diffusion of free chlorine
through the film is

o =DAC (5)
at
with the initial condition
C0,r) =0

and the boundary conditions

C(t R) = C* (x (1)),
C (6, Ry, () =0, (6)
where Rip(t) is the inside boundary of the saturated

film.
The equation for the inside boundary is
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at the point r = Rip(t). Here, Cg,¢ is the saturation
concentration.

Thus, in this case it is necessary to solve the equa-
tion of diffusion in a spherical ring with variable in-
side boundary Ryn(t), the value of Rjy(t) being found
from Eg. (7). The chlorine content of the particle also
depends on the trajectory; this relation is found from
one of boundary conditions (6).

X X

0 _ ¢yt c*

Trajectories of particles with the same resi-
dence time. The curve onthe right represents
the chlorine distribution along the reactor.

In 2all these cases the measure in trajectory space
determines the particle distribution function with re-
spect to degree of chlorination. Moreover, in order
to maintain a given concentration profile of gas-phase
chlorine it is necessary to supply a certain amount of
chlorine along the length of the reactor, this amount
being determined from the chlorine material balance
equation for an element of reactor volume; the quan-
tity of chlorine absorbed from this volume by the par-
ticles depends on the measure in trajectory space.
Further details of the material balance equation and
methods of numerical solution are given below.

Let us consider variant 11. The chlorine concentra-
tion at the equipment inlet C*(0) is given. Chlorine is
not made up along the length of the reactor. Here again
three cases are possible, but we will consider only
case 1.

For the individual particle we have Egs. (8) with
boundary conditions {4). We construct the material
balance equation for an element of the reactor volume.
We denote by q.r()?, X, 1) the amount of chlorine ab-
sorbed by a single particle introduced into the equipment
at time 7 (the so-called r-particle) with trajectory
X(t) in the reactor zone from £ =0 to ¢ = x in time t.

It is obvious, for example, that ¢, (x, H, i —1) =

R
= 4nSC(r,l‘—T) r’dr ; then the amount of chlorine
0

absorbed by that particle inthe reactor zone (x,x + dx}
in time (t,t + dt) is given by

ge (6 x 4 dx, t 4 df) — g, G, x 4 dx, £) —
_QI(}’X,Z('+AZ()+(]1(_;C, X, t):

e (x, x +0,Ax, 1+ 0,40
dx of

AxAt.

The amount of chlorine absorbed in the zone (x,x +
+ Ax) in time (t, t + At) by all the T-particles is ex-
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pressed by the integral of this functional over trajec-
tory space with measure p; defined by Eq. (1):
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For the stationary case the chlorine material bal-
ance equation has the form
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where V is the volume rate of supply of gas phase.
Thus, for the stationary case the mathematical model
of the process is represented by a system of equations
of the form
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with the corresponding boundary and initial conditions

C(0,r)=0, %Cr— (t,0)=0, C(,R) = C* (x),
C.(0,7) =0, C*(0) =C} n(0) = n,.

We will now turn to certain questions connected with
the solution of such problems.

VARIANT 1

The gas-phase chlorine concentration profile over
the height of the reactor is maintained by means of a
distributor. It is required to determine the density
function of the product with respect to chlorine content
for a given chlorine concentration profile. At the same
time, of course, the following extremal problem
arises: to determine the "optimal" chlorine concen-
tration profile in some sense, i.e., the profile such
that the product is most uniform in composition (for
example, this profile corresponds to the minimum
variance of the distribution function).

VARIANT II

The concentration of chlorine in the gas supplied to

the equipment (the gas is supplied from below) is given.

In this case some concentration profile is established
over the height of the reactor in the stationary regime.
The problem consists in determining this profile and
the distribution function (in the same way as in prob~
lem I). At the same time, two extremal problems
arise: a) to achieve maximum chlorine conversion, b)
to achieve a chlorine supply such that the product is
uniform.
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We will determine the algorithm of the numerical
solution. Since in both cases in order to solve this
problem we need to know the particle trajectories, we
shall first discuss a method of trajectory construction.

We select a time interval At. At the instant ty =
= kAt let the particle be in position xi. Then the prob-
ability distribution for its position at the instant ty+
is given by the solution yj+((At, x) of Eq. (1) with
boundary conditions (2) and the initial condition 6(x —
- Xg).

We then construct a random number generator
which makes it possible to determine xy+; from a
given distribution function. In this way we construct
the particle trajectory, noting that x, = 0 always. The
trajectory ends at x;. = H. Obviously, the smaller At,
the more accurately the trajectory will be constructed.
Moreover, we assume that over the entire interval
At from the instant ty. the particle is in position xj,
i.e., we approximate the trajectories with step func-
tions.

SOLUTION OF PROBLEM I

Let the particle have a trajectory x(t), constructed
by the method described above. We solve Eq. (5) on
the interval [tyg, ti+] with the corresponding initial
and boundary conditions

Colty, N =Cpr (b= + A1, 1),
—-———ac"a(o’ 9 =0, C,{t,R)=C*(x).
r

The chlorine content of the particle when it leaves

the equipment is

R
g = 54n r*Cyy (Iv—1 + At r)dr,
§

where N is the number of steps for the given trajec-
tory.

Having computed q for a sufficient number of parti-
cles, we obtain some approximation of the particle
distribution function with respect to the degree of
chlorination. The extremal problem consists in find-
ing the function C*(x) that minimizes the variance D
of the particle distribution function with respect to the
degree of chlorination for a given mean value of the
chlorine content of the particles. Approximating C*(x)
with a step function, we find that D = DXy, Xy, +- .,
Xy), i.e., the problem reduces to minimization of a
function of n variables, which is not very complicated,
but a rather clumsy computational task.

SOLUTION OF PRCBLEM II

This can be reduced to a sequence of problems I:
We assign the arbitrary profile C*;(x). We solve the
modified problem I, but in addition we calculate how
much chlorine is "captured" by 2all the particles in-
troduced at time T from the interval [xk,xk+i].f In
view of the stationarity of the process this amount of

By this we understand particles introduced into the
reactor during the interval from t to t + At.



JOURNAL OF ENGINEERING PHYSICS

chlorine is equal tothe amount absorbed inthat interval
by all the particles in the interval [xg, X4} during
time At (correct to a multiplier). We denote this
amount of chlorine, referred to unit volume of a re~
actor of length [x}, X)), by qk. This quantity shows
what the difference Cff,; — Cy should be. Knowing
C¥(0), we can construct the function C}*(x). As the
second approximation we take the function C¥ =

= aCi* + pCY*, where v and 8 >0, o + B = 1.
The choice of o and B is based on considerations
relating to accelerated convergence of the itera-
tion process. This process is repeated until

|G, —Cil<e
The particle distribution function with respect to
chlorine content is obtained automatically in the last
step. The optimization problem formulated for this
case above is similarly solved.

NOTATION

m(x, t) is the mass of particles in a unit volume; H
is the height of the reactor; t is the time; x is the co-
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ordinate along the reactor; Deff is the mixing coef-
ficient; C(t,r) is the free chlorine concentration in the
particle; r is the coordinate along the particle radius;
n is the free radical concentration; C, is the bound
chlorine concentration; v is the power of the source;
C*(x) is the concentration of chlorine in the gas phase;
w is the particle velocity;. D is the diffusion coeffic-
ient.
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